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There are two standardmethods for controlling the group velocity of light. Onemakes use of the dispersive proper-
ties associated with the resonance structure of a material medium. The other makes use of structural resonances,
such as those that occur in photonic crystals. Both procedures have proved useful in a variety of situations. In this
work we contrast these two approaches, especially in terms of issues such as the kinematics of energy flow though
the system and the resulting implications for the behavior of nonlinear optical processes in these situations. Stated
differently, this paper addresses the question of when nonlinear optical processes are enhanced through use of
slow-light interactions and when they are not. © 2011 Optical Society of America

OCIS codes: 190.0190, 190.5530, 260.2030, 060.3735.

1. INTRODUCTION
For the past 10 years or more, the optical physics community
has been fascinated by the opportunities afforded by nonlinear
optics to exercise dramatic control over the velocity with
which light pulses pass through material systems. One speaks
of light being “slow” under circumstances in which the group
velocity of light vg is much smaller than the velocity of light in
vacuum c. Even more quixotically, there are circumstances in
which the group velocity can exceed c; this occurrence is re-
ferred to as “fast light.” Most counterintuitive is the case in
which the group velocity is negative, implying that the peak
of a pulse travels in a direction opposite to that of phase velo-
city and to that of the energy flow; this circumstance is known
as “backwards light.” Since all of these phenomena share a
common origin, it is usual to refer to them collectively as “slow
light,” a convention that we follow in the present article.

It is not our intention to review the entire field of slow light
in the present article. The field has been reviewed extensively
in recent years, including the publication of review articles
[1,2], dedicated books [3,4], and special issues of scientific
journals [5,6]. Rather, we will focus on one particular aspect
of slow-light research, that of determining how properties of a
light field such as intensity, energy density, and electric field
strength become modified when the light enters a slow (or
fast) light medium. This question has the practical importance
of helping to determine how nonlinear optical processes be-
come modified when they occur within a slow-light medium.
We shall see that the nature of these modifications are very
different for slow light based on the intrinsic optical proper-
ties of a material system than for slow light based on struc-
tured optical materials, such as photonic crystals (PhCs)
and fiber Bragg gratings (FBGs).

2. MATERIAL SLOW LIGHT
By material slow light, we mean situations in which the velo-
city of light pulses can be described fully in terms of a spatially

uniform but frequency-dependent refractive index n of a ma-
terial. Under these circumstances, we can define the group
velocity of a light pulse as

vg � c∕ng; (1)

where we have introduced the group index given by

ng � n� ω dn
dω : (2)

We note that, because dn∕dω can be either positive or nega-
tive, the group index can be either larger or smaller than unity.
Also, if dn∕dω is negative and sufficiently large, the group in-
dex can itself become negative. Because slow light depends so
crucially on the frequency dependence of the refractive index,
one expects slow light effects to be particularly strong in the
vicinity of an absorption or gain resonance of a material sys-
tem. Behavior of this sort is shown in Figs. 1 and 2. In Fig. 1,
the two top panels show an absorption resonance and a gain
resonance. The two middle panels show the frequency depen-
dence of the refractive index associated with these reso-
nances, as required by the Kramers-Kronig relations. The
two lower panels show the resulting values of the group index
as calculated from Eq. (2). One sees that either fast or slow
light can occur in either case, depending on the detuning of
the optical wave from resonance.

In many applications of slow light, it is desirable to be able
to use nonlinear optical methods to control the group velocity.
Such a possibility is shown in Fig. 2. A typical sort of nonlinear
optical response leads to the establishment of a sharp dip in
an absorption or gain feature. Simple saturation effects can
lead to such behavior, as well as more complicated effects
such as electromagnetically induced transparency (EIT)
and coherent population oscillations (CPO), which are de-
scribed in more detail below. We see from Fig. 2 that both
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slow and fast light can occur for a dip in either a gain or ab-
sorption feature. Moreover, the value of the group index can
be controlled in this case by means of the intensity of the op-
tical field, which governs the extent of the dip.

We now turn our attention to a consideration of the elec-
tromagnetic energy relations appropriate to slow-light media.
It turns out that it is possible to derive Poynting’s theorem for
the case of a dispersive optical medium, that is, for a medium
with a refractive index that is frequency dependent. The de-
tails are somewhat subtle and we will not provide a derivation
here. These relations are derived in textbooks [7,8] and in
Section 2.7 of [3]. For the case of a material without appreci-
able gain or loss at the frequencies of interest, one finds that
the energy density is given by

u � 1
2
nngϵ0jEj2 (3)

and that the intensity (magnitude of the Poynting vector) is
given by

S � 1
2
ncϵ0jEj2: (4)

One sees that the intuitively expected relation

S � uvg � u�c∕ng� (5)

is obeyed [9]. These properties are illustrated heuristically in
Fig. 3. In the top panel we see that when a pulse enters a slow-
light medium it becomes spatially compressed by a factor
equal to the group index, and its peak energy increases by
the same factor. It is crucial to note that the pulse becomes
compressed in space but not in time. Thus, the pulse intensity
remains constant, as it must for reasons of energy conserva-
tion. The power flow of an optical wave through each trans-
verse plane cannot increase for propagation through a passive
medium. For n approximately equal to unity, which is the case
for many material slow-light media, there is no increase in
field strength within the medium even though the energy den-
sity has increased. This conclusion follows from the relation
expressed in Eq. (3). In the bottom panel of Fig. 3 we see that
when a pulse enters a fast-light medium it becomes spatially
expanded, and its peak energy density decreases.

There have been many experimental studies of slow and
fast light based on the dispersion associated with material re-
sonances. One early study was that of Chu and Wong [10],
who observed both slow and fast light effects in the propaga-
tion of ps optical pulses through a crystal of GaP:N. Another
early study was that of Wang et al. [11], who demonstrated
distortion-free fast light propagation by tuning the central fre-
quency of their pulse to the midpoint between two gain
features.

Many studies of slow-light effects have been based on the
use of EIT. This process makes use of quantum coherence to
produce a sharp dip in the absorption profile of an otherwise
opaque atomic transition [12]. The EIT process was used as
the slow-light mechanism in the celebrated demonstration
of Hau et al. of light speeds as low as 17 m∕s in an ultra-cold
gas of atoms [13]. Another approach to slow light is to make
use of CPOs. This process utilizes the response of the ground-
state population to the beating between pump and probe
waves in a saturable absorbing medium. These oscillations
lead to a pronounced dip in the probe absorption spectrum
for low modulation frequencies. This process is largely im-
mune to the presence of dephasing collisions, and thus it
can lead to slow-light effects even in room-temperature, solid-
state materials. Slow light [14], fast light [15], backwards light
[16], and rotary image drag [17] based on the process of CPO
have all been observed.

Even though the electric field strength is not increased in an
EIT slow light interaction, very large optical nonlinearities are
nonetheless predicted. This point has been emphasized in a
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Fig. 1. Origin of slow and fast light for an isolated absorption
resonance (a) and gain resonance (b).
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Fig. 3. (top) Schematic illustration of the pulse compression that oc-
curs when light enters a slow-light medium. (bottom) Pulse expansion
occurs for the case of a fast-light medium. In each case the pulse is
represented in terms of its energy density u.
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theoretical work of Harris and Hau [18] who show that effi-
cient nonlinear coupling can occur with pulse energies as
small as a few photons per atomic cross section [18]. This pre-
diction is borne out in the experimental results of Kash et al.
[19]. In the opinion of the present author, these results should
not be taken to imply that the nonlinear response is large
because the light travels slowly. Rather, it is that both slow
light and enhanced nonlinearity are a consequence of the
strong resonant coupling that occurs under conditions of EIT.

3. STRUCTURAL SLOW LIGHT
Qualitatively different behavior occurs for the case of struc-
tural slow light. By structural slow light, one means that
the propagation of light pulses is significantly modified by
the (typically periodic on distances scales of the order an op-
tical wavelength) spatial modulation of the optical properties
of a material system. A well-known example of such behavior
is that of PhCs [20–22]. PhCs are formed by a periodic mod-
ulation of the local dielectric constant in either one, two, or
three dimensions. By inducing defects in the periodic struc-
ture, devices such as resonators and waveguides can be
formed. A representative PhC structure is shown in Fig. 4,
and a typical dispersion diagram is shown in Fig. 5. It should
be noted that the band diagram becomes nearly horizontal
near the right-hand side of the plot, that is, near the edge
of the Brillouin zone. This situation corresponds to slow light,
because the group velocity given by dω∕dk is very small.

Considerable research has been conducted leading to the
design of PhC structures that are tailored to produce a strong
slow light effect [25–30]. Group indices as large as 300 (cor-
responding to a slow-down factor S ≡ ng∕n of nearly 100)
have been observed in such structures [26], although in many
cases scattering losses resulting from fabrication errors be-
come prohibitive for group indices larger than approximately
30–100 [31,32].

Unlike the case of material slow light, there is a true in-
crease of the electric field strength within a structural
slow-light medium. This increase can lead to direct enhance-
ment of nonlinear optical interactions, as we describe in detail
below. Because for a PhC structure the dielectric properties

are modulated on a subwavelength scale, a precise calculation
of the buildup of local electric field within the structure re-
quires detailed numerical modeling, for instance using FDTD
or plane-wave expansion methods [21]. Nonetheless, much in-
sight into the nature of the enhancement of the electric field
strength can be obtained by considering the case of a FBG,
which can be thought of as a one-dimensional PhC.

The reason why a FBG structure leads to slow light and to
enhanced nonlinear response can be understood heuristically
in terms of the diagram shown in Fig. 6. This diagram is in-
tended to show that the light bounces back and forth many
times in its passage through the structure. Also, because there
are both forward- and backward-going waves within the struc-
ture, each of which carries power, the total energy stored
within the structure is larger than the energy stored in a wave
propagating freely though a medium of the same mean refrac-
tive index. There will thus be an increase in electric field
strength within the structure, which can lead to enhanced
nonlinear optical effects.

We now turn to a more formal treatment of the FBG.We use
the notation and methodology of Winful [34–36]. We consider
a one-dimensional medium with a refractive index structure
given by n�z� � n0 � n1 cos�2kBz�, where n1 (which is as-
sumed to be much smaller than the background index n0)
is the amplitude of the index modulation. In addition, the
quantity kB is given by π∕Λ, where Λ is the spatial period
of the refractive index variation that constitutes the grating.

Fig. 4. A representative slow-light structure in the form on a
line-defect photonic-crystal structure. Reproduced with permission
from [23].
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Fig. 5. (Color online) (a) Dispersion diagram of a typical line-defect
photonic-crystal waveguide. (b) Mode index determined from the dis-
persion diagram of part (a). (c) Reduced group index (ng − n) for this
structure. Note that while the group index is very large, it changes
rapidly with wavelength, which is undesirable for many applications.
Much current work is aimed at developing dispersion-engineered PhC
waveguides that minimize this effect. Reproduced with permission
from [24].

Fig. 6. Schematic illustration of the origin of slow light in a Bragg
grating structure. Reproduced with permission from [33].
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kB is thus the wavenumber of a lightwave that satisfies the
Bragg condition. The frequency of such a lightwave is given
by ωB � kBc∕n0 and is know as the Bragg frequency. Under
the assumption of the slowly varying envelope approximation,
the forward- and backward-going waves within the structure
are coupled according to

∂EF

∂z
� 1

v
∂EF

∂t
� iκEBe2iΔβz (6)

∂EB

∂z
−
1
v
∂EB

∂t
� −iκEFe−2iΔβz; (7)

where κ � n0n1ωB∕2c is the coupling strength, Δβ � n0Ω∕c is
the wavenumber mismatch, Ω � ω − ωB is the frequency de-
tuning from the Bragg resonance, and v is the group velocity
of the background material. These equations can be solved
analytically. The steady state solution for an incident wave
of field strength E0 is given by

EF �z� � E0�γ cosh γ�z − L� � i�Ω∕v� sinh γ�z − L��∕g (8)

EB�z� � −iE0�κ sinh γ�z − L��∕g (9)

with γ � �κ2 − �Ω∕v�2�1∕2 and g � γ cosh γL − i�Ω∕v� sinh γL.
These equations are written in terms of hyperbolic functions
because Winful’s primary interest was in barrier tunneling. In
such a case, γ is a real quantity. However, Eqs. (8) and (9)
remain valid even for larger values of Ω that lie outside of
the photonic bandgap, where γ as defined above becomes
imaginary and the spatial dependences of EF and EB become
oscillatory. In this case, it is useful to define a real quantity q �
iγ in terms of which the dispersion relation for the FBG can be
written as [37]

�Ω∕v�2 � q2 � κ2. (10)

This relation is plotted in Fig. 7 in terms of the physical quan-
tities ω � ωB � Ω and k � kB � q. We see that a band gap
centered on the Bragg frequency ωB with a frequency width
given by 2κv is created. Incident light within this range of fre-
quencies cannot propagate through the structure and experi-
ence exponential decay with a decay constant given by the
quantity γ.

From the results of Eqs. (8) and (9), we see that both for-
ward- and backward-going waves of comparable amplitudes

exist within the interaction region. Energy is stored in each
of these waves, and thus the energy stored within the FBG
region exceeds that of a wave of amplitude E0 propagating
through a uniform medium. The stored energy can be calcu-
lated as the volume average of the time-averaged energy den-
sity u � 1

2n
2ϵ0�jEF j2 � jEBj2� and is given by [36].

U � U0

��κ∕γ�2�tanh γL�∕γL − �Ω∕γv�2sech2 γL
1� �Ω∕γv�2tanh2 γL

�
; (11)

where U0 � 1
2 ϵ0n2

0jE0j2AL and A is the cross-sectional area of
the waveguide.

In his paper [36], Winful goes on to show that the group
delay τg (roughly, the time difference between the entrance
and exit of the peak of the pulse) through the structure
can be identified with the dwell time τd (roughly the average
amount of time that light spends within the structure). These
two quantities are defined mathematically by τg � dϕ∕dΩ
where ϕ is the phase of the transmitted, forward-going field
and by τd � U∕Pi where Pi � 1

2 ϵ0n0cjE0j2A is the incident
power. Thus the normalized group delay (that is, τg∕τ0, where
τ0 � L∕v is know as the “equal time”) and the normalized
stored energy (that is, U∕U0) are identical quantities. The de-
pendence of these quantities on the frequency detuning Ω is
shown in Fig. 8 for the case κL � 4.

There have been many studies of slow- and fast-light effects
involving FBGs. Some of these studies have been summarized
in a review article by Longhi et al. [38], which concentrates on
superluminal pulse propagation effects. Some of their results
are shown in Fig. 9. This figure shows measured values as so-
lid lines and predicted curves as dashed lines, although the
agreement is so good that the dashed lines almost cannot
be discerned. We see that, in agreement with the predictions
of Fig. 8, there is a region of slow light outside of the band gap
and a region of fast light inside the band gap. In this same pa-
per, the authors report that by carefully engineering of the
FBG structure they were able to achieve a fast-light velocity
of 5c.

ω

kΒ

ωΒ

k
Fig. 7. Dispersion relation of a FBG as given by Eq. (10).

Fig. 8. Dependence of either the normalized group delay or the nor-
malized stored energy of a FBG structure on the detuning of the in-
cident light field from the Bragg frequency ωB. Reproduced with
permission from [36].
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We now turn to the crucial issue of how the buildup of fields
within a structural slow-light medium leads to a modification
of its linear and nonlinear optical properties. These issues are
in fact quite subtle, and we will not attempt to derive all of
these results. Instead we will quote important results and refer
the reader to the relevant literature. A particularly good sum-
mary is given in [39]. We quote results in terms of the “slow-
down factor” S, which is the ratio of the effective group index
of the structure to the mean refractive index of the structure.
The effective group index can usually be interpreted by ob-
vious analogy to the group index of material slow light given
by Eq. (1). More generally it is defined by n�eff�

g � c∕v�eff�g ,
where v�eff�g � L∕τg, where τg is the group delay defined above.

Linear optical properties, such as attenuation and phase ac-
cumulation, tend to scale linearly with the slow-down factor S,
reflecting the fact that the dominant influence of structuring a
material is to increase the effective path length that light un-
dergoes in passing through the material. Nonetheless, it has
been pointed out [31] that for large values of S (typically va-
lues larger than about 30–50) there is a contribution to the
attenuation that scales quadratically with S. This contribution
arises from multiple scattering within the waveguide. Current
work has emphasized means of engineering PhC waveguides
to minimize these sources of loss [23]. We also note that care-
ful experimental studies performed by Thevenaz and cowor-
kers have confirmed that linear absorption scales with the
group index for structural but not material slow light [40,41].

We next consider how the nonlinear optical process of the
intensity-dependent phase accumulation (sometimes referred
to as self-phase modulation) depends on the slow-down factor
S. Here the dominant dependence is S2, reflecting the fact that
the light intensity is increased by one factor of S, while the
effective pathlength is increased by another factor of S. But
the details are much more subtle. The theory of this effect
was developed by Bhat and Sipe [42] and is summarized in
a recent review [39]. One finds that the nonlinear coefficient
is given by [37]

Γ �
�
3 − S−2

2

�
S2γ0; (12)

where γ0 is the nonlinear coefficient of the unstructured back-
ground material, which is proportional to the standard n2

coefficient. Here the prefactor results from the nonuniform
field distribution within each unit cell of the FBG structure.
Clearly, the prefactor reduced to unity for S � 1 and takes
on the value 3∕2 for very large values of S. These predictions
have been largely confirmed in a series of recent experiments
[43–45].

Still different scaling laws are predicted for four-wave mix-
ing processes. Here theory predicts [46] that the power effi-
ciency should scale as S4, and recent experiments have
verified this dependence [47,48]. At first sight, it might seem
surprising that the intensity-dependent phase accumulation
scales as S2 whereas four-wave mixing scales as S4, when
both are in fact χ�3� processes. The reason for the different
dependence is that one usually quotes the induced phase shift
for the first case but the generated power in the second.
Squaring the field amplitude necessarily entails squaring the
functional dependence on S.

Higher-order nonlinear optical effects enhanced by struc-
tural slow-light have also been observed. For example,
Corcoran et al. [49] have observed green light emission at
the third-harmonic frequency through slow-light enhanced
third-harmonic generation in silicon photonic-crystal wave-
guides pumped by a 1550 nm laser source.

4. COMPARISON OF THE TWO CASES
AND SUMMARY
In this article we have taken a close look at some of the simi-
larities and some of the differences between using material
resonances and structural resonances as a means to induce
extreme values of the group velocity. In broad terms, one finds
that there is extremely interesting physics contained in each
approach. Also, both approaches offer good opportunities for
the development of applications. In general terms, material
slow light offers better opportunity to control the group velo-
city of light in real time, whereas structural slow light offers a
more robust platform for developing applications.

Even at the level of simple kinematics, there are significant
differences between the two approaches. For material slow
light, the energy density u, intensity S, and group velocity
vg obey the intuitively pleasing relation [Eq. (5)] S � uvg is
obeyed. We stress that there is no such analogous relation
for the case of structural slow light. The reason is that the en-
ergy density has contributions from both forward- and
backward-going streams of radiation. However, the net flow
of energy is constrained by energy conservation to be equal to
that of the incident light field.

A consequence of this sort of behavior is that there is no
enhancement of the electric field strength within a material
slow light material, whereas there is an increase for the case
of structural slow light. As a result, nonlinear optical pro-
cesses are inherently enhanced through use of a structural
slow light material, but not for a material slow light material.
The (real) enhancements of nonlinear effects for the case of
material slow light presumably result from the fact that both
nonlinear response and dispersion of the refractive index are
enhanced by working close to resonance.

Although this paper was written as a review article, an im-
portant conclusion is that not all of the subtleties of slow and
fast light are currently understood. There are still enormously
interesting questions to be addressed both at the conceptual
level and especially in terms of developing applications of
slow light.
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